

Asahi**KASEI**

TUFTECTM

H Series

P Series Selectively Hydrogenated Type

M Series Acid or Amine Modified Type

Hydrogenated Styrenic Thermoplastic Elastomer (SEBS)

Contents

1
Fundamentals

1 Fundamentals 2

2
TUFTEC™
H series

2 TUFTEC™ H series - Salient Features, Grades and Properties 3, 4

3
TUFTEC™
P series

3 TUFTEC™ P series - Salient Features, Grades and Properties 5

4 TUFTEC™ M series - Salient Features, Grades and Properties 6

4
TUFTEC™
M series

5 Basic Properties of TUFTEC™ 7, 8

1. Stress-strain Curves
2. Solubility in Specific Solvents
3. Elasticity vs. Temperature
4. Viscosity vs. Shear Rate
5. Weatherability
6. Heat-aging Resistance
7. Toluene Solution Viscosity
8. Heat Resistance

5
Basic Properties

6 TUFTEC™- Applications and Recommended Grades 9

6
Applications &
Recommended
Grades

7 Use and Effect of TUFTEC™ as Resin Modifier 10-15

8 Use and Effect of TUFTEC™ as Compatibilizer 15, 16

7
Use and Effect as
Resin Modifier

9 Use and Effect of TUFTEC™ in Adhesive Applications 17, 18

8
Use and Effect as
Compatibilizer

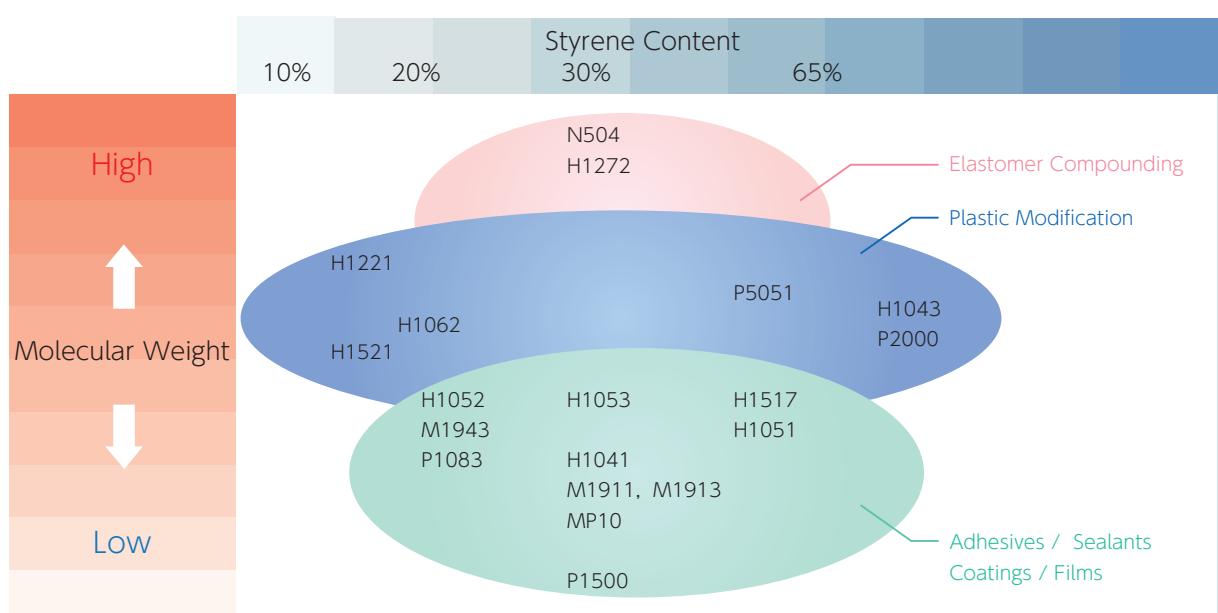
10 Important Notes and Precautions 19

9
Use and Effect as
Adhesive
Applications

10
Important Notes
and Precautions

1 Fundamentals

TUFTEC™ is a hydrogenated thermoplastic styrenic elastomer with excellent weatherability and heat resistance that is produced by hydrogenation of styrene and butadiene block copolymers.


TUFTEC™ is the product of longstanding leadership in elastomers development and process technology at Asahi Kasei Chemicals, beginning with its SBS elastomers and extending through the world-leading H-series SEBS elastomers, which were introduced in 1987 and then followed by the functional group-bearing M-series as the world's first modified SEBS elastomers.

TUFTEC™ P-series matches the rapidly diversifying market needs. It is produced by highly selective partial-hydrogenation of the SBS polymer, resulting in higher heat resistance than SBS elastomers and greater processability and low-temperature properties than fully-hydrogenated SEBS elastomers, in addition to the inherent polymer characteristics and properties.

¹⁾SBS : Information on TUFPRENE™, ASAPRENE™T, and ASAFLEx™ is given in separate brochures.

TUFTEC™ Polymer Grades and Application Map

2 Salient Features of TUFTEC™ H Series

- Thermoplastic elastomers with the high elasticity and strength comparable to vulcanized rubber
- Excellent weatherability and resistance to heat aging
- Rubber elasticity retention over broad temperature range
- Excellent flex resistance
- Excellent chemical (acid, alkali, and alcohol) resistance
- Low density - 0.89 to 0.97 g/cm³
- Excellent compatibility with styrenic and olefinic resins, imparting high impact strength

Grades and Properties I

Grade			H1221	H1062	H1521	H1052	H1053	H1041	H1051	H1517	H1043	
Property	Test Method	Test Condition	Units	Non Oil-extended								
Density	ISO 1183	-	g/cm ³	0.89	0.89	0.89	0.89	0.91	0.91	0.93	0.93	
S/EB Weight Ratio	AsahiKasei Method	-	wt%	12/88	18/82	18/82	20/80	29/71	30/70	42/58	43/57	
MFR	ISO 1133	230°C 2.16kgf	g/10min	4.5	4.5	15	13.0	1.8	5.0	0.8	3.0	
		200°C 5kgf	g/10min	-	-	-	10.0	-	3.5	0.5	-	
		190°C 2.16kgf	g/10min	-	-	2.3	-	-	0.3	-	-	
Hardness	ISO 7619	Durometer Type A	-	42	67	39	67	79	84	96	92	
Tensile Strength	ISO 37	Dumbbell Type 1A 500mm/min	mPa	9.5	15.0	12.5	11.8	25.0	21.6	32.3	16.0	
			%	980	670	810	700	550	650	600	780	
			mPa	1.0	4.3	1.3	2.5	4.8	3.4	8.3	7.6	
Elongation	ISO 188	Type2 Oven 120°C 168hrs	%	-	97	-	99	98	97	-	-	
			%	-	100	-	98	98	101	-	-	
			%	-	-	-	-	-	-	-	96	
Physical Form			Pellet									
Applications		PP Modifier	✓	✓	✓	✓		✓				
		PPE, PS Modifier					✓	✓	✓	✓	✓	
		Compatibilizer		✓			✓	✓		✓	✓	
		Multilayer Films	✓	✓	✓	✓						
		Adhesives & Sealants	✓	✓	✓	✓	✓	✓				
		TPE Compounds	✓		✓	✓						

*1) Durometer type D *2) 10mm/min

Grades and Properties II

Grade				N504	H1272				
Property	Test Method	Test Condition	Units	Non Oil-extended	Oil-extended				
Density	ISO 1183	-	g/cm ³	0.91	0.90				
S/EB Weight Ratio	AsahiKasei Method	-	wt%	32/68	35/65				
MFR	ISO 1133	230°C 2.16kgf	g/10min	No Flow	No Flow				
		200°C 5kgf	g/10min	No Flow	No Flow				
		190°C 2.16kgf	g/10min	No Flow	No Flow				
Hardness	ISO 7619	Durometer Type A	-	-	35				
Tensile Strength	ISO 37	Dumbbell Type 1A 500mm/min	MPa	-	18.6				
Elongation			%	-	950				
300%Tensile Stress			MPa	-	1.0				
Heat Resistance	Maintained Ratio of Tensile Strength	ISO 188	Type2 Oven 120°C 168hrs	%	-	98			
	Maintained Ratio of Elongation		%	-	99				
Physical Form				Crumb	Pellet				
Applications	PPE, PS Modifier			✓	✓				
	TPE Compounds			✓	✓				
6 Applications & Recommended Grades									
7 Use and Effect as Resin Modifier									
8 Use and Effect as Compatibilizer									
9 Use and Effect as Adhesive Applications									
10 Important Notes and Precautions									

3 Salient Features of TUFTEC™ P Series

1
Fundamentals

2
TUFTEC™
H series

3
TUFTEC™
P series

4
TUFTEC™
M series

5
Basic Properties

6
Applications &
Recommended
Grades

7
Use and Effect as
Resin Modifier

8
Use and Effect as
Compatibilizer

9
Use and Effect as
Adhesive
Applications

10
Important Notes
and Precautions

- Good heat resistance compared with SBS
- Good processability compared with SEBS
- Good low-temperature properties compared with SEBS
- Good compatibility with polyolefin
- Good compatibility with several types of tackifiers
- Cross-linkable

Grades and Properties

グレード名				P1083	P1500	P5051	P2000	
Property	Test Method	Test Condition	Units	Non Oil-extended				
Density	ISO 1183	-	g/cm ³	0.89	0.91	0.94	0.98	
S/EB Weight Ratio	Asahi Kasei Method	-	wt%	20/80	30/70	47/53	67/33	
MFR	ISO 1133	190°C 2.16kgf	g/10min	3.0	4.0	3.0	3.0	
		200°C 5kgf		-	-	-	45	
Solution Viscosity	15% Toluene	mPa · s	-	35	-	-	-	
Hardness	ISO 7619	Durometer Type A	-	56	69	93	-	
		Durometer Type D	-	-	-	-	74	
Tensile Strength	ISO 37	Dumbbell Type 1A 500mm/min	MPa	9.0	3.3	31.0	24.5	
Elongation			%	700	780	700	42	
300%Tensile Stress			MPa	3.0	2.1	7.0	-	
Physical Form				Pellet				
Applications	PP Modifier			✓			✓	
	PS Modifier					✓	✓	
	Compatibilizer					✓	✓	
	Multilayer Films						✓	
	Adhesives & Sealants			✓	✓	✓		
	Foam Shoe Soles			✓		✓		
	TPE Compounds			✓				

4 Salient Features of TUFTEC™ M Series

- Reactive elastomers with the same basic properties as H-series
- Functional groups impart:
 - Excellent compatibility with engineering plastics
 - Excellent adhesion to metals and plastic substrates

Grades and Properties

グレード名				M1943	M1913	M1911	MP10	
Property	Test Method	Test Condition	Units	Acid Modified			Amine-modified	
Acid Number	Titration Method	-	mgCH ₃ ONa/g	10	10	2	-	
Density	ISO 1183	-	g/cm ³	0.90	0.92	0.91	0.91	
S/EB Weight Ratio	Asahi Kasei Method	-	wt%	20/80	30/70	30/70	30/70	
MFR	ISO 1133	230°C 2.16kgf	g/10min	8.0	5.0	4.5	4.0	
		200°C 5kgf	g/10min	6.0	4.0	3.5	-	
Hardness	ISO 7619	Durometer Type A	-	67	84	84	89	
Tensile Strength	ISO 37	Dumbbell Type 1A 500mm/min	MPa	11.0	22.0	22.0	28.0	
Elongation			%	650	600	650	600	
300%Tensile Stress			MPa	2.9	4.4	4.1	5.6	
Tensile Modulus	ISO 527	1mm/min	MPa	6.9	25	20	-	
Heat Resistance	Maintained Ratio of Tensile Strength	ISO 188	Type2 Oven 120°C 168hrs	%	99	98	99	
	Maintained Ratio of Elongation			%	96	95	96	
Physical Form				Pellet				
Applications	PA Modifier			✓	✓			
	PET Modifier			✓	✓			
	TPU Modifier			✓	✓		✓	
	PC Modifier			✓	✓			
	Compatibilizer			✓	✓			
	Adhesives & Sealants			✓	✓	✓	✓	
	Tie Layer Films			✓	✓	✓	✓	

1 Fundamentals

2 TUFTEC™ H series

3 TUFTEC™ P series

4 TUFTEC™ M series

5 Basic Properties

6 Applications & Recommended Grades

7 Use and Effect as Resin Modifier

8 Use and Effect as Compatibilizer

9 Use and Effect as Adhesive Applications

10 Important Notes and Precautions

5 Basic Properties of TUFTEC™

1 Fundamentals

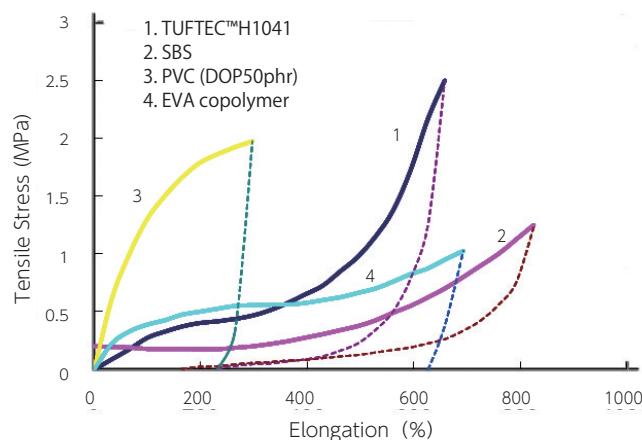
2 TUFTEC™ H series

3 TUFTEC™ P series

4 TUFTEC™ M series

5 Basic Properties

6 Applications & Recommended Grades

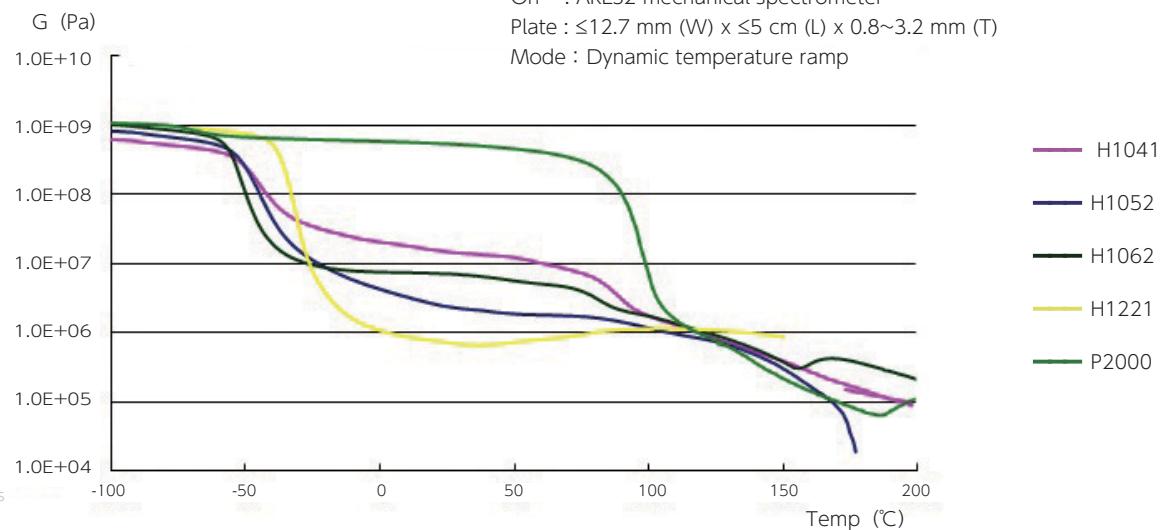

7 Use and Effect as Resin Modifier

8 Use and Effect as Compatibilizer

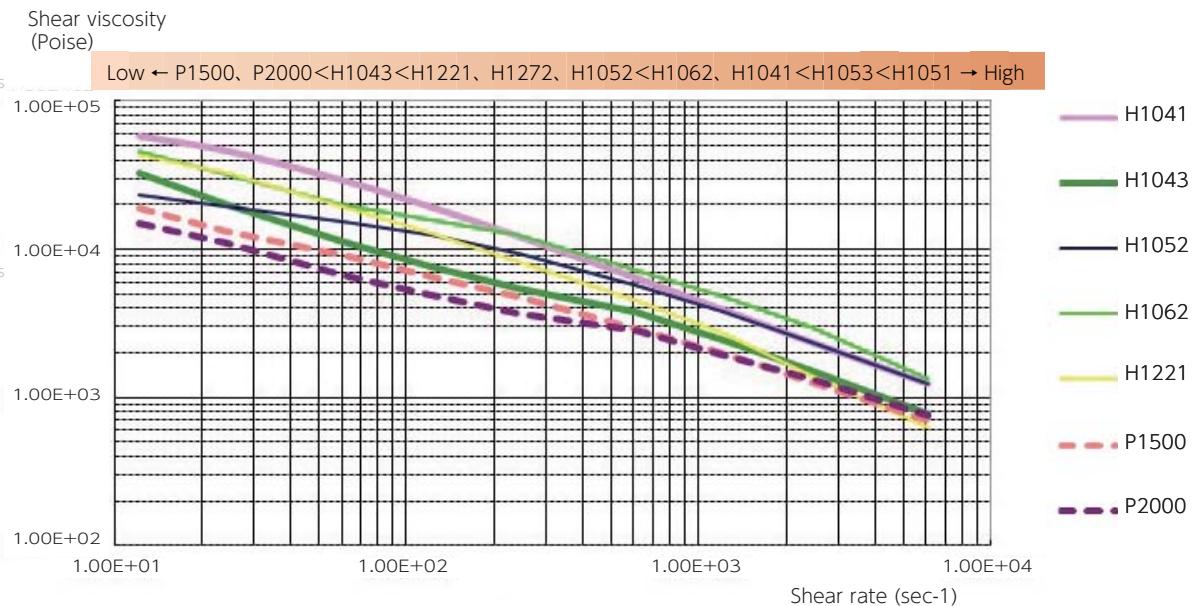
9 Use and Effect as Adhesive Applications

10 Important Notes and Precautions

1. Stress-strain Curves

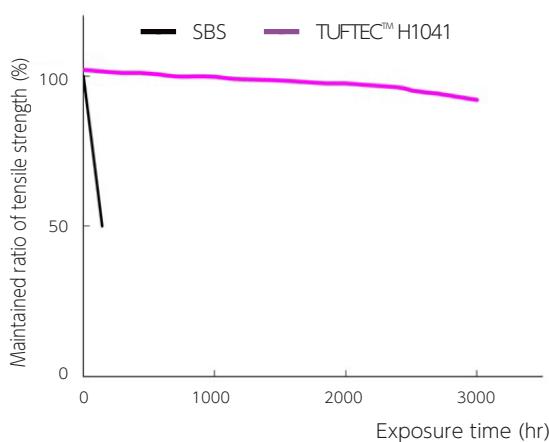

Test sample: 2 mm thickness compression molded
Test method: ISO 37, No. 3 dumbbell, 500 mm/min

2. Solubility in Specific Solvents


Soluble	Low or non-soluble
Cyclohexane	Ethanol
Toluene	Isopropanol
Xylene	n-pentane
THF	n-hexane
Chloroform	Acetone
	Methanol

Note: TUFTEC™ swells strongly in gasoline, kerosene, and lubricating oils.

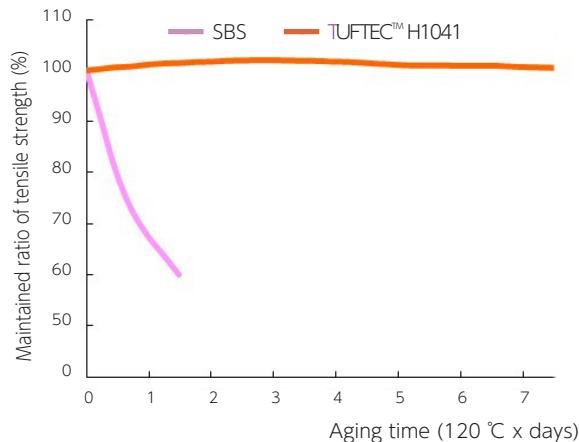
3. Elasticity vs Temperature



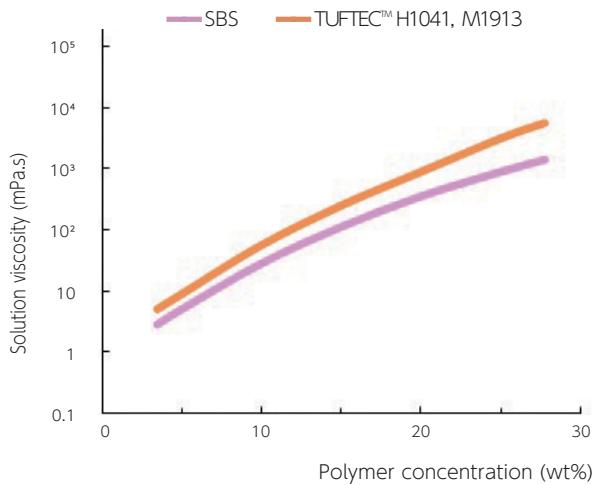
4. Viscosity vs Shear Rate

5. Weatherability

On Sunshine Weatherometer

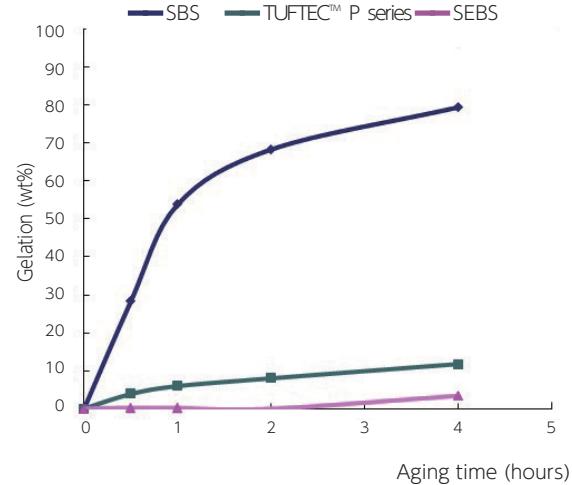


Test conditions:


Weather-resistant formulations
Black panel temperature, 63°C
Spray cycle, 18 min/120 min

6. Heat-aging Resistance

Gear Aging Test



7. Toluene Solution Viscosity

Test condition:
B-type viscosity meter @ 25°C

8. Heat Resistance

Gelation ratio after aging at 200°C with equal styrene contents

6 TUFTEC™ - Applications and Recommended Grades

1 Fundamentals	Applications	Object Material	Effect	End Products	Recommended Grades		
					H Series	P series	M Series
2 TUFTEC™ H series	Resin Modifier	PP	Enhancing impact strength	Car bumpers Car interior (Instrumental panels, door trims) Food & medical packaging	H1052 H1062	P1083	
3 TUFTEC™ P series			Softening material	Cable jacket & sheathing Stretch film Hoses, tubes Food & medical packaging	H1221 H1052 H1062 H1521		M1913 M1943
4 TUFTEC™ M series		PPE	Softening material	IC trays Electronic parts	H1051 H1053 H1272		
5 Basic Properties		PA	Enhancing impact strength and toughness	Electric connectors			M1913 M1943
6 Applications & Recommended Grades		PET	Enhancing impact strength and toughness	Toughening agent for recycled PET	H1051 H1053		M1913
7 Use and Effect as Resin Modifier	Compatibilizer	PP/PS PP/PPO	Enhancing ductility, Toughening recycled material	Microwavable food containers Cable jacket & sheathing Strengthening agent for recycling	H1041 H1043 H1051	P2000 H1517	M1913 M1943
8 Use and Effect as Compatibilizer	Asphalt Modifier		Good impact resistance with thermal stability	Hot mopping asphalt roofing	H1053	P1500	
9 Use and Effect as Adhesive Applications	Adhesives and Sealant			Adhesives for protective films Adhesives for buildings and constructions Hot melt adhesives for hygiene products Automotive sealants Laminating materials for PS sheets Adhesives for aluminum and PP	H1221 H1052 H1041 H1521	P1500 P5051 P1083	M1913
10 Important Notes and Precautions	Cross-linked Foam			Foamed shoe soles		P5051 P1083	
	Raw Material for TPE Compounds			Grips ABS over-molded products Airbag covers	H1272 H1062 N504		M1913 M1943 MP10

7 Use and Effect of TUFTEC™ as Resin Modifier

TUFTEC™ H series and M series, with their outstanding compatibility characteristics, are widely used to modify and to compatibilize both thermoplastic and thermoset resins and plastics.

- In blends with engineering and commodity plastics, for high impact strength or flexibility.
- As reactive binders, to produce new alloys with special characteristics, through compatibilization of previously unattainable polymer combinations.

Basic Guideline on Effectiveness for Different Resin Types

Engineering plastics	H Series	M Series
Polyamide (PA)	P	E
Polyesters (PEs)	P	G
Polyphenylene ether (PPE)	E	E
Polyoxymethylene (POM)	G	P
Polycarbonate (PC)	P	G
Polyphenylene sulfide (PPS)	G	G

Commodity plastics	H Series	M Series
Polyethylene (PE)	G	G
Polypropylene (PP)	E	G
Polystyrene (PS)	E	E

Rating index

E: Excellent G: Good P: Poor

1 Fundamentals

2 TUFTEC™ H series

3 TUFTEC™ P series

4 TUFTEC™ M series

5 Basic Properties

6 Applications & Recommended Grades

7 Use and Effect as Resin Modifier

8 Use and Effect as Compatibilizer

9 Use and Effect as Adhesive Applications

10 Important Notes and Precautions

1. Polypropylene Modification

1 Fundamentals

TUFTEC™ H-series is effective for polypropylene modification. The optimum grade varies depending on the targeted characteristics of the end product, as illustrated below.

2 TUFTEC™ H series

I . Block PP modification with TUFTEC™ H1041

II . Improvement of Low-temperature Properties of Talc-filled PP with TUFTEC™ H1062

III . Clear, flexible PP with TUFTEC™ H1221

3 TUFTEC™ P series

I . Block PP Modification with TUFTEC™ H1041

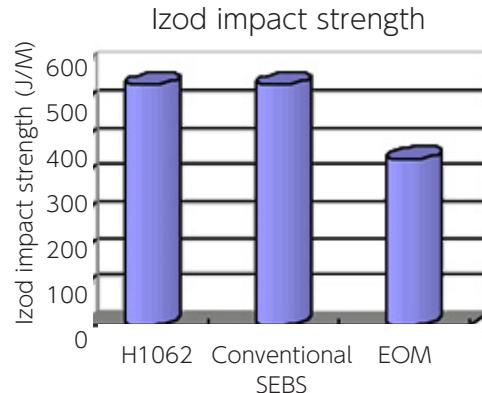
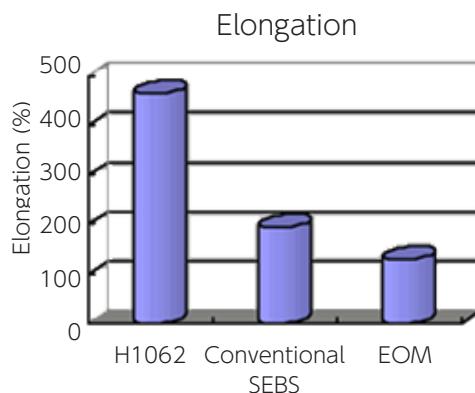
As shown in this table, modification of block PP with TUFTEC™ H1041 can effectively increase softness and low-temperature impact strength. Adding the optimum amount of TUFTEC™ is the key to achieve the desired combination of stiffness and impact strength.

4 TUFTEC™ M series

			Block PP / TUFTEC™ H1041				
	Property	Unit	Test Method	100 / 0	85 / 15	70 / 30	55 / 45
5 Basic Properties	MFR	g/10min	ASTM D 1238 (230°C, 2.16kgf)	1.9	2.3	2.9	3.9
	Tensile Strength	MPa	ASTM D 638	23	22	17	14
	Elongation at Break	%		700	600	570	540
6 Applications & Recommended Grades	Flexural Strength	MPa	ASTM D 790	23°C	34	26	19
				50°C	20	15	11
				80°C	12	9	6
7 Use and Effect as Resin Modifier	Flexural Modulus	MPa	ASTM D 790	23°C	1,200	850	640
				50°C	640	490	350
				80°C	390	280	200
8 Use and Effect as Compatibilizer	Izod Impact Strength*1	J/m	ASTM D 256	23°C	150	NB	NB
				0°C	61	NB	NB
				-10°C	52	NB	NB
				-30°C	45	82	NB
				-40°C	43	69	NB
9 Use and Effect as Adhesive Applications	Hardness	Shore D	ASTM D 1706	72	68	63	56

*1 Izod impact test, N B:Non-breaking

10 Important Notes and Precautions



II. Improvement of Low-temperature Properties of Talc-filled PP with TUFTEC™ H1062

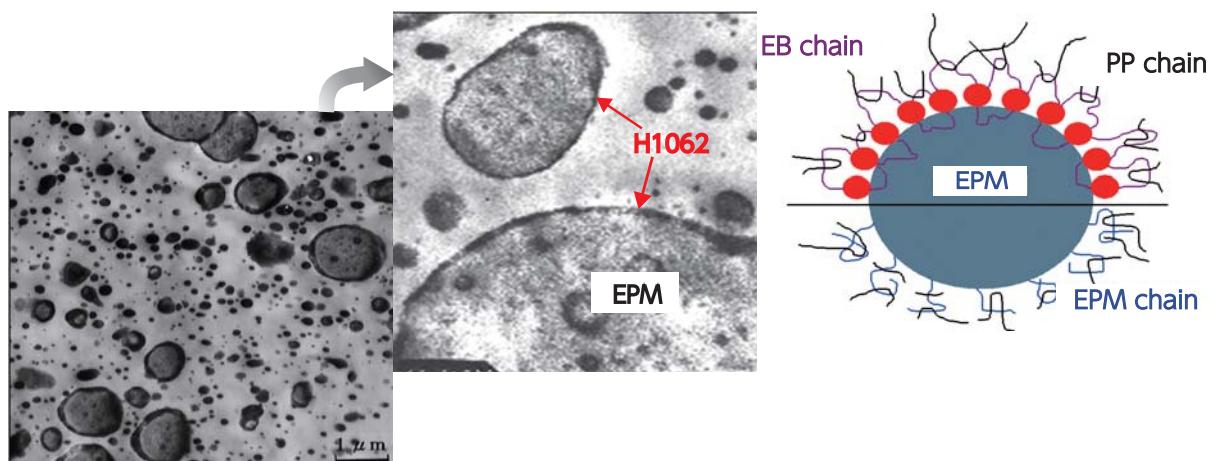
Block polypropylene with TUFTEC™ is superior in impact resistance, elongation, low-temperature brittleness, and their performance characteristics, as indicated by this comparison of TUFTEC™ H1062 with a conventional styrene-ethylene/butylene-styrene (conventional SEBS) and an ethylene/octene copolymer (EOM).

	H1062	Conventional SEBS	EOM
Brittleness Temperature (° C)	-32.3	-27.8	-17.4

Typical application of TUFTEC™ modified talc-filled PP compounds

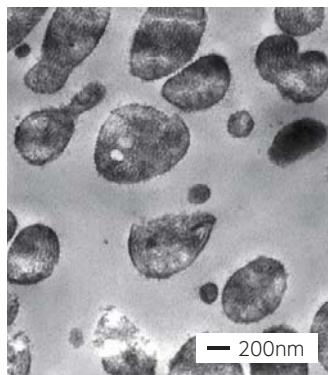
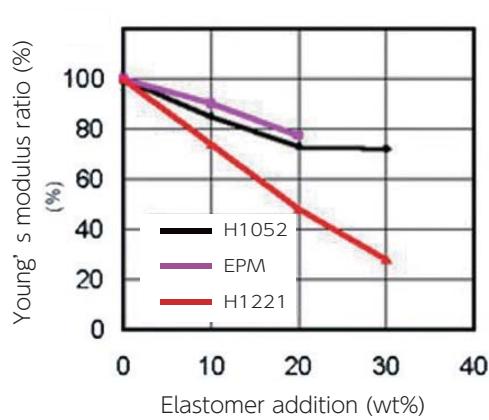
Formulation and compounding conditions

Formulation: PP, block copolymer (MFR 30) / TUFTEC™ H1062/talc=65/15/20

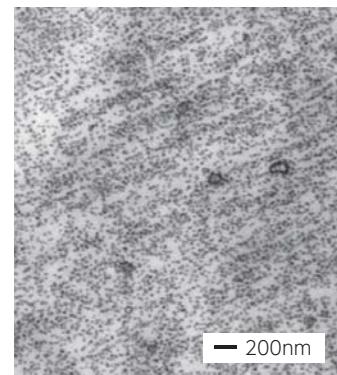

Compounding cylinder temp.: 210° C

Injection molding: Cylinder temp.: 230° C, Mold temp.: 40° C

Injection time: 10 sec, Cooling time: 30 sec



Homo PP/EPM/H1062 (80/15/5) blend morphology and toughening mechanism

TUFTEC™H1062 encapsulates the EPM rubber particles and enhances the interfacial adhesion between polypropylene and EPM, stabilizing the blend morphology.



III. Clear, Flexible PP with TUFTEC™ H1221

As shown below, clear and flexible polypropylene can be obtained by adding TUFTEC™ H1221, due to its nanometer-order dispersibility in polypropylene

PP / H1052 (80/20)
Young' s modulus 700MPa

PP / H1221 (80/20)
Young' s modulus 340MPa

Properties of TUFTEC™ H1221 and H1052 Blends with PP

Homo PP (MFR 7.0 film grade with slipping agent) / TUFTEC™ = 80/20

	Property	Unit	TUFTEC™ H1052	TUFTEC™ H1221
	MFR (230 °C, 2.16 kgf)	g/10 min	13	3
	MBond Styrene	Wt%	20	13
Sheet or Film	Young's Modulus (MD/TD)	MPa	700/550	340/380
	Tensile Yield Strength (MD/TD)	MPa	7/6	5/5
	Tensile Rupture Strength (MD/TD)	MPa	18/18	13/13
	Elongation (MD/TD)	%	72/66	70/71
	Light Transmission	%	91.5	92.4
	Haze	%	17.8	4.2
	Blanching, ΔT	%	33.3	3.2
Injection molding	Flexural Modulus	MPa	1,100	710
	Tensile Yield Strength	MPa	29	23
	Tensile Strength at Break	MPa	21	28
	Elongation	%	730	530
	Brittle Temperature	°C	<-30	-21.4

Sheet or Film

Young' s modulus: 20 mm X 100 mm X 70 μ m, 2 mm/min

Light transmission and Haze: 70 μ m thickness

Blanching: Light transmission loss under DuPont impact test (0.4 mm thickness sheet, 1/2" missile, 1 kg load, 50 cm height)

Injection Molding

Flexural modulus: JIS K6758, bending speed 2 mm/min

Tensile properties: JIS K6758, tensile speed 50 mm/min

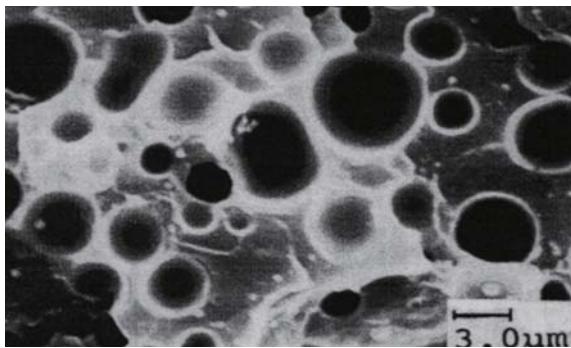
Brittleness temperature: JIS K7216

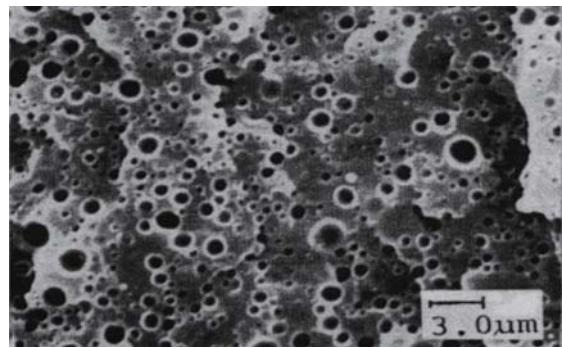
Blending Condition

30 mmΦ twin screw extruder, 210 ° C, 200 rpm

Applications

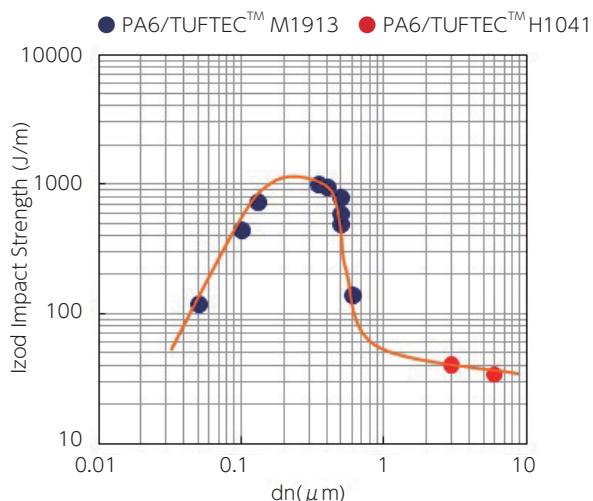
Truck covers


Carry bags


Logo mark line

2. Polyamide Modification

As shown by these two micrographs of modified nylon 6 (PA6) obtained under the same blending and extruding conditions, the TUFTEC™ M series enables the formation of significantly smaller dispersed particles than the TUFTEC™ H series, and far higher impact strength, due to the formation of a graft structure by the reaction of the TUFTEC™ M acid anhydride groups with the PA6 functional end groups.

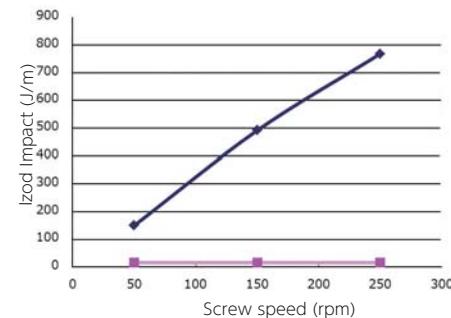


PA6 / TUFTEC™H1041 (80/20) blend
Izod impact strength 50 J/m

PA6 / TUFTEC™M1913 (80/20) blend
Izod impact strength 850 J/m

As shown on the right, maximum impact strength can be obtained by optimizing the size of dispersed particles, which is dependent on the PA6 end-group, the functional-group content of TUFTEC™ M, and the blending and extruding conditions.

3. Polycarbonate Modification


Because of their modified polymer structure, and the polarity of polycarbonate (PC), TUFTEC™ M series polymers exhibit a large effect on PC even when added in small quantities, as shown here in comparison with the non-modified TUFTEC™ H1041.

Material (Composition, wt%)	Izod Impact Strength 1/4" (J/m)	Tensile Strength (MPa)	Flexural Strength (MPa)	Flexural Modulus (MPa)
PC	180	64	98	2,500
PC / H1041 (97.5 / 2.5)	270	59	91	2,400
PC / M1913 (97.5 / 2.5)	720	58	89	2,400
PC / M1943 (97.5 / 2.5)	750	58	90	2,400

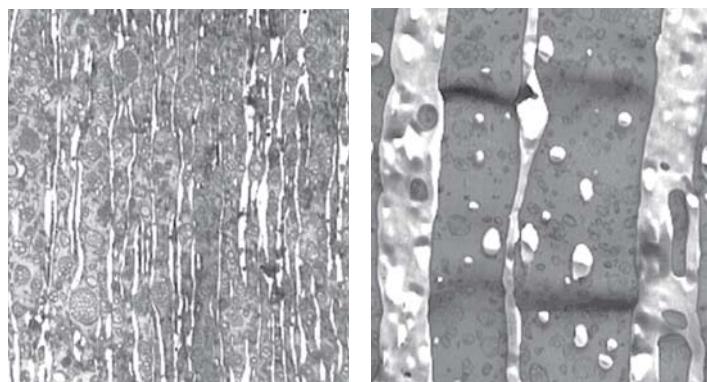
4. PET Modification

The impact strength of PET can be increased substantially by TUFTEC™ M, as shown here for TUFTEC™ M1943, and the increase in toughness can be controlled by screw speed and other conditions.

Property	Unit	PET	PET / M1943 80 / 20		
			50	150	250
Izod impact strength 23°C	J/m	16	150	492	769
Flexural modulus 23°C	MPa	2380	1500	1520	1550

8 Use and Effect of TUFTEC™ as Compatibilizer

1. Compatibilization of Styrenic and Olefinic Resins


TUFTEC™ H1043 and P2000 are high-performance compatibilizers for styrenic and olefinic resins.

They enable,

1. Co-continuous morphology in the compatibilized styrenic-olefinic alloy at styrenic rich compositions.
2. Compatibility with polystyrene and polyphenylene ether.
3. Outstanding compatibility with polypropylene and polyethylene.

The TUFTEC™ P2000 molecular structure is highly compatible with both HIPS and PP, enabling this extremely fine dispersion of PP into HIPS.

Matrix: HIPS (dark areas)
Dispersed particles: PP (white areas)
Samples: Sheets (0.7 mm),
Ruthenium-stained ultra-thin sections

HIPS/PP/TUFTEC™
Film laminated food tray

Thermoformed food
container

2. TUFTEC™ H Compatibilization of HIPS and PP

Property	Units	Test Method	Test Condition	HIPS	PP	HIPS/PP w/o TUFTEC™ 70/30/0	HIPS/PP with H1041 70/30/6	HIPS/PP/ with H1043 70/30/6
Density	g/cm³	ISO 1183	g/cm³	1.05	0.90	0.99	0.99	0.99
MFR	g/10min	ISO 1133	200°C 5kgf	6.6	8.5*	25	13	13
Tensile Strength	MPa	ASTM D638	5mm/ min	30.4	26.5	26.5	23.5	28.4
Elongation	%	ASTM D638	5mm/ min	19	>200	3	16	170
Flexural Strength	MPa	ASTM D790	3mm/ min	52	31	46	40	46
Flexural Modulus	MPa	ASTM D790	3mm/ min	2260	1080	1860	1570	1770
Izod Impact Strength	J/m	ASTM D256	—	7.5	12.0	4.4	11.2	7.2
HDT	°C	ASTM D648	.6kg	87	105	91	89	89
Vicat Softening Point	°C	ASTM D1525	—	106	150	110	108	108

* 230°C 2.16kgf

3. TUFTEC™ P2000 Compatibilization of Styrenic Resin and PP

Styrenic Resin / PP Relative Proportions				PP/HIPS, GPPS/ABS/TUFTEC™ P2000 30/70/0 or 10					
				PP					
				HIPS		GPPS		ABS	
Property	Units	Test Method	Test Condition	No TUFTEC™	TUFTEC™ P2000	No TUFTEC™	TUFTEC™ P2000	No TUFTEC™	TUFTEC™ P2000
Density	—	ISO 1183	g/cm³	0.99	0.99	1.00	1.00	1.00	1.00
MFR	g/10 分	ISO 1133	200°C, 5kg ^{*)1)}	9.2	9	12.8	6.5	81	57
Tensile Strength	MPa	ASTM D638	5 mm/ min	26.0	31.6	31.0	46.0	29.7	38.0
Elongation	%	ASTM D638	5 mm/ min	3	170	2	100	3	145
Flexural Strength	MPa	ASTM D790	2 mm/ min	47	50	54 ^{*)2)}	75	50	66
Flexural Modulus	MPa	ASTM D790	2 mm/ min	1,790	1,870	2,570	2,520	2,190	2,050
Izod Impact Strength	J/m	ASTM D256	Notched	2.7	52	17	18	52	60

*1: 220 ° C, 10 kg. *2: Rupture

PP: homopolymer, MFR=3.3 (230 ° C, 2.16 kg).

HIPS: PSJ-Polystyrene 475D, MFR=2.0 (200 ° C, 5 Kg). GPPS: PSJ-Polystyrene™ 685 by PS Japan, MFR=1.5 (200 ° C, 5 kg)

ABS: STYLAC™ ABS 121B by Asahi Kasei Chemicals, MFR=17 (220 ° C, 10 kg).

1 Fundamentals

2 TUFTEC™ H series

3 TUFTEC™ P series

4 TUFTEC™ M series

5 Basic Properties

6 Applications & Recommended Grades

7 Use and Effect as Resin Modifier

8 Use and Effect as Compatibilizer

9 Use and Effect as Adhesive Applications

10 Important Notes and Precautions

9 Use and Effect of TUFTEC™ in Adhesive Applications

1
Fundamentals

As indicated below, TUFTEC™ H, M, and P series all provide excellent performance as the base polymer for a broad range of regular and pressure-sensitive adhesives.

2
TUFTEC™
H series

1. Compatibility with Tackifier Resins

Compatibility of TUFTEC™ and other styrenic thermoplastics with typical tackifiers.

3
TUFTEC™
P series

Tackifiers	Polymer	SEBS	TUFTEC™ P1500	SBS	SIS	SEPS
Alicyclic saturated hydrocarbon	F	G	N	G	G	
Alicyclic hydrocarbon	N to F	G	G	G	G	F to G
Aliphatic hydrocarbon	G	G	N	G	G	
Hydrogenated polyterpene	G	G	N	G	G	

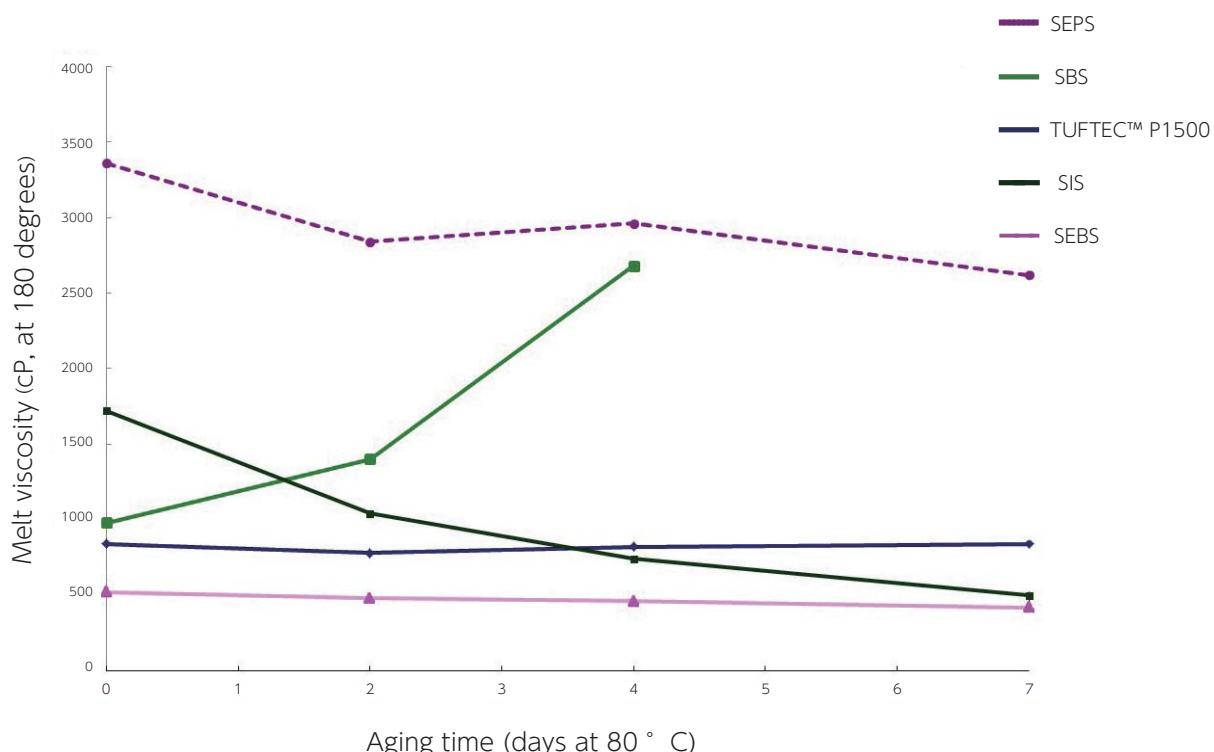
Rating: G: Good, F: Fair, N: Non-compatible

4
TUFTEC™
M series

5
Basic Properties

6
Applications &
Recommended
Grades

2. Thermal Stability of Pressure-sensitive Adhesives


7
Use and Effect as
Resin Modifier

Thermal stability of typical pressure-sensitive adhesive formulations based on TUFTEC™ P1500 and other styrenic block copolymers, with an alicyclic hydrocarbon tackifier.

8
Use and Effect as
Compatibilizer

9
Use and Effect as
Adhesive
Applications

10
Important Notes
and Precautions

3. Adhesive Peel Strength of Neat Polymers

Adherend	Temperature (°C)	Adhesive strength (N/10mm)		
		TUFTEC™ M1913	TUFTEC™ H1041	TUFPRENE™ A
		Modfied SEBS	SEBS	SBS
Aluminum Foil, 100 µm	200	53	4	11
PET Film, 50 µm	180	10	1	0.4
Nylon 66 Plate, 3 mm	180	24	1	8
Stainless Steel Plate, 2mm	200	39	8	16
Steel Plate, 2 mm	200	>60	11	47
EVOH Plate, 2 mm	140	43	3	0.4
Glass Plate	200	23	0.4	3

Adhesion process: Place neat polymer on adherend, 5 min pre-heating, 5 min press under 1 kgf/cm² load, 3 min cooling

Peeling procedure: T-shape peeling for film or foil adherend, 180-degree peeling for plates

Peeling speed 200 mm/min, at room temperature.

Adhesive layer: 200 µm

4. Tackifier Selection

Formulation (411 parts in total)

Polymer : 100 phr

Tackifier: 250 phr

Paraffin Oil (PW380) : 60 phr

Stabilizer: 1 phr

Adhesion characteristics with typical tackifiers

Tackifier		Melt viscos. (mPa · s) 180°C	Soft. point (°C)	Adhesive properties		
				Loop tack (N/15mm)	Adhesive Strength (N/10mm)	Retention at 65°C (Hr)
Alicyclic hydrocarbon	SEBS	600	91	0.8	16.1	1.9
	P1500	830	107	4.4	15.9	6
Alicyclic saturated hydrocarbon	SEBS	520	92	3.1	16.3	6
	P1500	840	103	14.1	17.3	20
Aliphatic hydrocarbon	SEBS	480	92	15.8	14.5	10
	P1500	860	106	17.7	18.6	25
Hydrogenated polyterpene	SEBS	850	101	0.1	17.2	7
	P1500	1,830	119	0.1	17.6	15

How to make adhesive composites: Blending in toluene solution

Tape formation: Coating adhesive composites on PET film with 50 µm thickness

1 Fundamentals

2 TUFTEC™ H series

3 TUFTEC™ P series

4 TUFTEC™ M series

5 Basic Properties

6 Applications & Recommended Grades

7 Use and Effect as Resin Modifier

8 Use and Effect as Compatibilizer

9 Use and Effect as Adhesive Applications

10 Important Notes and Precautions

10 Important Notes and Precautions

1 Fundamentals

2 TUFTEC™
H series

3 TUFTEC™
P series

4 TUFTEC™
M series

5 Basic Properties

6 Applications &
Recommended
Grades

7 Use and Effect as
Resin Modifier

8 Use and Effect as
Compatibilizer

9 Use and Effect as
Adhesive
Applications

10 Important Notes
and Precautions

All information, data, and values contained herein are given as a representation in good faith of results obtained by the indicated test methods and of data, information, and documents currently available to Asahi Kasei Corporation (hereinafter "AKC"), for use only as a basic guide to grade selection for various applications and not as any explicit or implied warranty or guarantee of any nature, and are subject to change in accordance with changes in product properties and new findings or knowledge. It is the responsibility of the user to determine the safety and suitability of TUFTEC™ for the intended use, purpose, and application.

(1) Safe handling and use

Always observe the following general precautions and consult the Safety Data Sheets (SDS) issued by AKC, before handling or using TUFTEC™, and investigate and determine by advance testing the safety and suitability of any addition or mixing of any other resin, additive, or other material. It is the responsibility of the user to determine the safety and suitability of TUFTEC™ for the intended use, purpose and application.

① Hot and molten polymer

Avoid inhalation and eye or skin contact with any gases generated in heating or melting TUFTEC™ and with the hot or molten polymer. Employ local ventilation and protective gear, including chemical goggles and protective gloves, during any heating or melting operation.

② Combustibility

TUFTEC™ is flammable and must be kept strictly away from heat, sparks, and flame during handling and storage. In the event of its combustion, carbon monoxide and other toxic combustion gases may be generated; extinguish with water or with foam or dry chemical extinguisher.

③ Disposal

Dispose of TUFTEC™ in accordance with local and national law and regulations, by burning in a properly equipped incinerator or by burial in a properly designed landfill site. Note that carbon monoxide and other toxic gases may be generated during incineration. Do not release to sewers, ground, or any body of water.

④ Storage

Store TUFTEC™ in a cool dark area away from direct sunlight, humidity, and moisture.

⑤ Molding conditions

Appropriate temperatures and other conditions for the molding and extruding of TUFTEC™ vary with the resin grade and type of use. Consult AKC or its representatives for related information.

(2) Medical and food applications

Certain TUFTEC™ grades comply with hygienic standards. For any application involving extended bodily contact, medical devices and containers, or food packaging, contact AKC. AKC will not be responsible for any problem in connection with or arising out of any use performed without its consent.

(3) Patent infringement

AKC warrants only that the sale or use of TUFTEC™ does not in itself infringe any patent or other industrial property right relating thereto, but does not warrant against infringement by reason of its use in combination with other materials or in any process.

NO OTHER REPRESENTATION OR WARRANTY, EXPRESSED OR IMPLIED, WHETHER ORAL OR ARISING BY USAGE OF TRADE OR COURSE OF DEALING, SHALL BE GIVEN ANY LEGAL EFFECT by the provision of TUFTEC™ or this publication. AKC assumes no obligation or liability for injury or damage relating to or arising out of the use of TUFTEC™.

TUFTEC™ is a trademark of Asahi Kasei Corporation.

Asahi Kasei Corporation

Performance Products SBU, Thermoplastic Elastomer Division,

| TPE Sales & Marketing Department 2

| 1-1-2 Yurakucho, Chiyoda-ku, Tokyo 100-0006 Japan

Phone +81-3-6699-3253 Fax +81-3-6699-3268

AKelastomer

Visit our website at
www.akelastomer.com

Revised on April 2019